Software Engineering Observation 8.1

Applying the const type qualifier to a built-in array
parameter in a function definition to prevent the original
built-in array from being modified in the function body
is another example of the principle of least privilege.
Functions should not be given the capability to modify a
built-in array unless it’s absolutely necessary.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

Declaring Built-In Array Parameters
* You can declare a built-in array parameter in a function
header, as follows:

int sumElements(const int values[], const size_t
humberOfElements)

* which indicates that the function’s first argument should be

a one-dimensional built-in array of 1nts that should not be
modified by the function.

* The preceding header can also be written as:

int sumElements(const int *values, const size_t
humberOfElements)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

« The compiler does not differentiate between a function that

recelves a pointer and a function that receives a built-in
array.

— The function must “know’ when it’s receiving a built-in array or
simply a single variable that’s being passed by reference.

* When the compiler encounters a function parameter for a
one-dimensional built-in array of the form const 1nt
values[], the compiler converts the parameter to the
pointer notation const 1nt *values.

— These forms of declaring a one-dimensional built-in array
parameter are interchangeable.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

C++11.: Standard Library Functions begin and end

 In Section 7.7, we showed how to sort an array object with
the C++ Standard Library function sort.

« We sorted an array of strings called colors as
follows:
// sort contents of colors
sort(colors.begin(), colors.end());
« The array class’s begin and end functions specified
that the entire array should be sorted.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

* Function sort (and many other C++ Standard Library
functions) can also be applied to built-in arrays.

* For example, to sort the built-in array n shown earlier in

this section, you can write:
// sort contents of built-in array n
sort(begin(n), end(C n));

« C++11’s new begin and end functions
(from header <1terator>) each receive a
bullt-in array as an argument and return a
pointer that can be used to represent ranges of
elements to process in C++ Standard Library
functions like sort.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

Built-In Array Limitations
 Built-in arrays have several limitations:

They cannot be compared using the relational and equality operators—you
must use a loop to compare two built-in arrays element by element.

They cannot be assignedto one another.

They don’t know their own size—a function that processes a built-in array
typically receives botfthe built-in array’s name and its s/ize as arguments.

They don’t provide automatic bounds checking—Yyou must ensure that
array-access expressions use subscripts that are within the built-in array’s
bounds.

* Objects of class templates array and vector are safer, more
robust and provide more capabilities than built-in arrays.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

Sometimes Bulilt-In Arrays Are Required

* There are cases Iin which built-in arrays must
be used, such as processing a program’s
command-line arguments.

* You supply command-line arguments to a
program by placing them after the program’s
name when executing it from the command
line. Such arguments typically pass options to
a program.

8.5 Built-In Arrays (cont.)

* On a Windows computer, the command
dir /p
* uses the /p argument to list the contents of the

current directory, pausing after each screen of
Information.

* On Linux or OS X, the following command uses the
- 1a argument to list the contents of the current
directory with details about each file and directory:

Is -1la

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.6 Using const with Pointers

* Many possibilities exist for using (or not
using) const with function parameters.

* Principle of least privilege

— Always give a function enough access to the data
In Its parameters to accomplish its specified task,
but no more.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

§§| Software Engineering Observation 8.2

If a value does not (or should not) change in the body of
a function to which it’s passed, the parameter should be
declared const.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

% Error-Prevention Tip 8.4

@ Before using a function, check its function prototype to
determine the parameters that it can and cannot modify.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.6 Using const with Pointers (cont.)

* There are four ways to pass a pointer to a
function

— a nonconstant pointer to nonconstant data

— a nonconstant pointer to constant data (Fig. 8.10)
— a constant pointer to nonconstant data (Fig. 8.11)
— a constant pointer to constant data (Fig. 8.12)

« Each combination provides a different level of
access privilege.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.6.1 Nonconstant Pointer to Nonconstant
Data

* The highest access Is granted by a nonconstant
pointer to nonconstant data

— The data can be modified through the dereferenced
pointer, and the pointer can be modified to point to
other data.

* Such a pointer’s declaration (e.g., Tnt
*countPtr) does not include const.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.6.2 Nonconstant Pointer to Constant Data

A nonconstant pointer to constant data

— A pointer that can be modified to point to any data item of the appropriate type,
but the data to which it points cannotbe modified through that pointer.
Might be used to recesve a built-in array argument to a function that
should be allowed to read the elements, but nof modify them.

Any attempt to modify the data in the function results in a compilation
error.

Sample declaration:
const int *countPtr;
— Read from right to left as “countPtr is a pointer to an integer constant” or
more precisely, “countPtr is a non-constant pointer to an integer constant.”
Figure 8.10 demonstrates GNU C++’s compilation error message
produced when attempting to compile a function that receives a
nonconstant pointerto constant aata, then tries to use that pointer to
modify the data.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

VO~ UBNDE WN =

// Fig. 8.10: fig08_10.cpp
// Attempting to modify data through a
// nonconstant pointer to constant data.

void f(const int *); // prototype

int main(Q)

{
int y = 0;

fC&); // f will attempt an illegal modification
} // end main

// constant variable cannot be modified through xPtr
void f(const int *xPtr)
{

*xPtr = 100; // error: cannot modify a const object
} // end function f

Fig. 8.10 | Attempting to modify data through a nonconstant pointer to const
data. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

