
©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

Declaring Built-In Array Parameters

• You can declare a built-in array parameter in a function
header, as follows:
int sumElements(const int values[], const size_t
 numberOfElements)

• which indicates that the function’s first argument should be
a one-dimensional built-in array of ints that should not be
modified by the function.

• The preceding header can also be written as:
int sumElements(const int *values, const size_t
 numberOfElements)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

• The compiler does not differentiate between a function that
receives a pointer and a function that receives a built-in
array.
– The function must “know” when it’s receiving a built-in array or

simply a single variable that’s being passed by reference.

• When the compiler encounters a function parameter for a
one-dimensional built-in array of the form const int
values[], the compiler converts the parameter to the
pointer notation const int *values.

– These forms of declaring a one-dimensional built-in array
parameter are interchangeable.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

C++11: Standard Library Functions begin and end

• In Section 7.7, we showed how to sort an array object with
the C++ Standard Library function sort.

• We sorted an array of strings called colors as
follows:
// sort contents of colors

sort(colors.begin(), colors.end());

• The array class’s begin and end functions specified
that the entire array should be sorted.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

• Function sort (and many other C++ Standard Library
functions) can also be applied to built-in arrays.

• For example, to sort the built-in array n shown earlier in
this section, you can write:
// sort contents of built-in array n
sort(begin(n), end(n));

• C++11’s new begin and end functions
(from header <iterator>) each receive a
built-in array as an argument and return a
pointer that can be used to represent ranges of
elements to process in C++ Standard Library
functions like sort.

©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

8.5 Built-In Arrays (cont.)
Built-In Array Limitations

• Built-in arrays have several limitations:
– They cannot be compared using the relational and equality operators—you

must use a loop to compare two built-in arrays element by element.

– They cannot be assigned to one another.

– They don’t know their own size—a function that processes a built-in array
typically receives both the built-in array’s name and its size as arguments.

– They don’t provide automatic bounds checking—you must ensure that
array-access expressions use subscripts that are within the built-in array’s
bounds.

• Objects of class templates array and vector are safer, more
robust and provide more capabilities than built-in arrays.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

Sometimes Built-In Arrays Are Required

• There are cases in which built-in arrays must
be used, such as processing a program’s
command-line arguments.

• You supply command-line arguments to a
program by placing them after the program’s
name when executing it from the command
line. Such arguments typically pass options to
a program.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

• On a Windows computer, the command

dir /p

• uses the /p argument to list the contents of the
current directory, pausing after each screen of
information.

• On Linux or OS X, the following command uses the
-la argument to list the contents of the current
directory with details about each file and directory:

ls -la

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.6 Using const with Pointers

• Many possibilities exist for using (or not

using) const with function parameters.

• Principle of least privilege

– Always give a function enough access to the data

in its parameters to accomplish its specified task,

but no more.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.6 Using const with Pointers (cont.)

• There are four ways to pass a pointer to a

function

– a nonconstant pointer to nonconstant data

– a nonconstant pointer to constant data (Fig. 8.10)

– a constant pointer to nonconstant data (Fig. 8.11)

– a constant pointer to constant data (Fig. 8.12)

• Each combination provides a different level of

access privilege.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.6.1 Nonconstant Pointer to Nonconstant

Data

• The highest access is granted by a nonconstant

pointer to nonconstant data

– The data can be modified through the dereferenced

pointer, and the pointer can be modified to point to

other data.

• Such a pointer’s declaration (e.g., int

*countPtr) does not include const.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.6.2 Nonconstant Pointer to Constant Data

• A nonconstant pointer to constant data
– A pointer that can be modified to point to any data item of the appropriate type,

but the data to which it points cannot be modified through that pointer.

• Might be used to receive a built-in array argument to a function that
should be allowed to read the elements, but not modify them.

• Any attempt to modify the data in the function results in a compilation
error.

• Sample declaration:
 const int *countPtr;

– Read from right to left as “countPtr is a pointer to an integer constant” or
more precisely, “countPtr is a non-constant pointer to an integer constant.”

• Figure 8.10 demonstrates GNU C++’s compilation error message
produced when attempting to compile a function that receives a
nonconstant pointer to constant data, then tries to use that pointer to
modify the data.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

